If secθ+tanθ=p, find value of secθ in terms of p.
Answer:
12(p+1p)
- We know that,
sec2θ−tan2θ=1⟹(secθ+tanθ)(secθ−tanθ)=1⟹p(secθ−tanθ)=1⟹secθ−tanθ=1p - Now,
(secθ+tanθ)+(secθ−tanθ)=p+1p⟹2secθ=(p+1p)⟹secθ=12(p+1p)