If secθ+tanθ=p, find value of secθ in terms of p.


Answer:

12(p+1p)

Step by Step Explanation:
  1. We know that,
    sec2θtan2θ=1(secθ+tanθ)(secθtanθ)=1p(secθtanθ)=1secθtanθ=1p
  2. Now,
    (secθ+tanθ)+(secθtanθ)=p+1p2secθ=(p+1p)secθ=12(p+1p)

You can reuse this answer
Creative Commons License