What is the sum of the first nnn terms of the geometric series 1,35,925 ...?1,35,925 ...?1,35,925 ...?


Answer:

52[1(35)n]52[1(35)n]52[1(35)n]

Step by Step Explanation:
  1. The sum of first nnn terms of a G.P.G.P.G.P. is given by,
    Sn=a(1rn)(1r)Sn=a(1rn)(1r)Sn=a(1rn)(1r)
    Here, the first term, a=1a=1a=1 and
    the common ratio, r=ak+1ak where k1r=ak+1ak where k1r=ak+1ak where k1
    r=351=35r=351=35r=351=35
  2. The sum of first nnn terms of this G.P.G.P.G.P. is given by,
    [Math Processing Error]
  3. Hence, the sum of the first nn terms of the G.P.G.P. is 52[1(35)n]52[1(35)n].

You can reuse this answer
Creative Commons License